Show that k2+k+1 is not a square number for k€N

 


Solution,

For any natural number k,

K2< k2+k+1 < k2+2k+1

K2< k2+k+1 < (k+1)2             …………………..(1)say

Here it is known to us that no square number is found between two consecutive square number.

 

If possible,

Assume an integer r such that, k2+k+1= r2

From,(1)  

    K2< k2+k+1 < (k+1)2 

 = K2< r2 < (k+1)2

  = K< r < k+1

Since no such integer lies between 2 consecutive integers.

So our assumption is wrong that,

 k2+k+1= r2

Hence k2+k+1 is not a square number for k € N

No comments:

Post a Comment

Mind blowing hard question

प्रश्न: एक समकोण त्रिभुज का लम्ब 6मिटर इसक  कर्ण 10मिटर से लगा हुआ है।क्षेत्रफल का मान पता  करें।                आप इसका उत्तर 1/2×10×6=30 s...