Solution;
Let a = 2k + 1 , for
any k ∈ ℕ
now, a⁴ + 4a² + 11
= (2k +1)4 + 4(2k + 1)² + 11
= (4k² + 4k + 1)² + 4(4k² + 4k + 1) + 11
= (16k⁴ + 16k² + 1 + 32k³ + 8k + 8k²) + 16k² + 16k
+ 4 + 11
= 16k⁴ + 32k³ + 40k² + 24k + 16
= 16[k⁴ + 2k³ + 1] + 40k² + 24k
= 16[k⁴ + 2k² + 1] + (80k² + 48k)/2
= 16[k⁴ + 2k² + 1] + 16k(5k + 3)/2
here,
k(5k + 3)/2 is also an integer for all k ∈ ℕ
so, assume k(5k + 3)/2 = m
now, a⁴ + 4a² + 11
= 16[k⁴ + 2k² + 1] + 16m
= 16[k⁴ + 2k² + 1 + m]
hence, it is clear that 16 divides a⁴ + 4a² + 11
when a is any odd integers.
No comments:
Post a Comment