THE ARCHIMEDEAN PROPERTY PROOF

 DEFINITION:- 

An ordered field F has the archimedean property if, given any positive x and y in F there is an integer n>0 so that nx>y.
            Simply:-
If    x,y €R  and   x,y>0 ,( y can be <0 ,)     there is an integer n>0 so that nx>y.



PROOF:-    

 (by contradiction)


Let us assume that , nx<y     ....................(1)
and nx is general element of set F
i. e, 
       F= {nx  :  x €R and x>0 , here n€N }
Since nx<y     ( from assuming ...1)
        (a) Thus y is an upper bound of set F.
        (b) It shows set F is bounded above                  and a subset of R. Though                              completeness theorem we can                   say that there is also present a                      least upper bound (  or sup(F)  )                     ,,  let we named it k....( say) .
Since;
                      x>0
    Then,        -x<0
    By adding alpha both side, 
           -x+ alpha < alpha
            alpha -x< alpha 
     Now if alpha is a supremum then obviously alpha -x  is less than suprimum.
it also shows that  alpha-x  is not an upper bound of set F. 

Let an other natural number m ,
For which, 
                     alpha-x <mx 
                    alpha<mx+x
                   alpha<x(m+1)

     Since, m€ natural number then (m+1) is also a natural number .
Finally here, 
                 alpha<x(m+1)
It shows that alpha is still small,
 but we assumed that alpha is supremum of the set F.
THIS CONTRADICTION ARISES BECAUSE OF OUR WRONG ASSUMPTION ๐Ÿ˜‘๐Ÿ˜’
THAT  nx<y ,
      Thus the correct property is given ,
In  any positive x and y in F there is an integer n>0 so that nx>y.


Watch Video in youtube https://youtu.be/lYI15pTqpEQ 





No comments:

Post a Comment

Mind blowing hard question

เคช्เคฐเคถ्เคจ: เคเค• เคธเคฎเค•ोเคฃ เคค्เคฐिเคญुเคœ เค•ा เคฒเคฎ्เคฌ 6เคฎिเคŸเคฐ เค‡เคธเค•  เค•เคฐ्เคฃ 10เคฎिเคŸเคฐ เคธे เคฒเค—ा เคนुเค† เคนै।เค•्เคทेเคค्เคฐเคซเคฒ เค•ा เคฎाเคจ เคชเคคा  เค•เคฐें।                เค†เคช เค‡เคธเค•ा เค‰เคค्เคคเคฐ 1/2×10×6=30 s...