Prove that the product of three consecutive positive integers is divisible by 6.

 


proof;

by method (1)

Let n be any positive integer.
and the three consecutive positive integers are n, n+1 and n+2.
 From Euclid’s division lemma for b= 6,
 we know that any positive integer can be of the form 6q, or 6q+1, or 6q+2, or 6q+3, or 6q+4, or 6q+5. 
  So,
  Case(1)
If n= 6q, 
then,
 n(n+1)(n+2)= 6q(6q+1)(6q+2) 
 n(n+1)(n+2)= 6[q(6q+1)(6q+2)]  
 n(n+1)(n+2)= 6m, 
which is divisible by 6. ......................here,[m= q(6q+1)(6q+2)]
Case(2)
If, n= 6q+1,
then,
 n(n+1)(n+2)= (6q+1)(6q+2)(6q+3)  
 ⇒ n(n+1)(n+2)= 6[(6q+1)(3q+1)(2q+1)] 
 ⇒ n(n+1)(n+2)= 6m,
 which is divisible by 6...............here, [m= (6q+1)(3q+1)(2q+1)] 
Case (3)
If n= 6q+2,  
then,
n(n+1)(n+2)= (6q+2)(6q+3)(6q+4)
  n(n+1)(n+2)= 6[(3q+1)(2q+1)(6q+4)]
 n(n+1)(n+2)= 6m
which is divisible by 6...............here, [m= (3q+1)(2q+1)(6q+4)] 
Case(4)
If, n= 6q+3,
 then,
n(n+1)(n+2)= (6q+3)(6q+4)(6q+5) 
 n(n+1)(n+2)= 6[(2q+1)(3q+2)(6q+5)] 
 n(n+1)(n+2)= 6m,
 which is divisible by 6..................here, [m= (2q+1)(3q+2)(6q+5)]  
Case(5) 
If, n= 6q+4,
then,
  n(n+1)(n+2)= (6q+4)(6q+5)(6q+6)
  n(n+1)(n+2)= 6[(6q+4)(6q+5)(q+1)] 
 ⇒ n(n+1)(n+2)= 6m, 
which is divisible by 6.   ..........     here, [m= (6q+4)(6q+5)(q+1)]
Case(6)
 If, n= 6q+5,  
then
n(n+1)(n+2)= (6q+5)(6q+6)(6q+7) 
 n(n+1)(n+2)= 6[(6q+5)(q+1)(6q+7)]  
 n(n+1)(n+2)= 6m, 
which is divisible by 6. [m= (6q+5)(q+1)(6q+7)]
  Hence, the product of three consecutive positive integers is always divisible by 6.

 

Proof; 

by method (2)

Let n be any positive integer.

and the three consecutive positive integers are n, n+1 and n+2.

  From Euclid’s division lemma for b= 3,

 we know that any positive integer can be of the form 3q, or 3q+1, or 3q+2..

Therefore, n=3q or 3q+1 or 3q+2, where is some integer.

If n=3p, then n is divisible by 3.

If n=3p+1

then n+2=3p+1+2=3p+3

=3(p+1) is divisible by 3.

here n+2 is divisible by 3

If n=3p+2,

 then n+1=3p+2+1=3p+3

=3(p+1) is divisible by 3.

here n+1 is divisible by 3

So, we can say that one of the numbers among n,n+1 and n+2 is always divisible by 3 , thus the product of these three n, n+1 and n+2 is always divisible by 3

Similarly, 

 From Euclid’s division lemma for b= 2,

 we know that any positive integer can be of the form 2q, or 2q+1.

Therefore, n=2q or 2q+1, where q is some integer.

If n=2q,

 then n and n+2=2q+2=2(q+1) are divisible by 2.

If n=2q+1, then n+1=2q+1+1=2q+2=2(q+1) is divisible by 2.

So, we can say that one of the numbers among nn+1 and n+2 is always divisible by 2, thus the product of these three n, n+1 and n+2 is always divisible by 2.

Since, n(n+1)(n+2) is divisible by 2 and both.

Hence, n(n+1)(n+2) will be always divisible by 6.

 

3 comments:

Mind blowing hard question

प्रश्न: एक समकोण त्रिभुज का लम्ब 6मिटर इसक  कर्ण 10मिटर से लगा हुआ है।क्षेत्रफल का मान पता  करें।                आप इसका उत्तर 1/2×10×6=30 s...