If a and b are integers , not both zero,and d be a positive integer. Then d=gcd(a,b) if and only if d satisfies

 

If a and b are integers , not both zero,and d be a positive integer. Then d=gcd(a,b) if and only if d satisfies

(1)       d|a and d|b.

(2)       if c|a and c|b, then c|d.

Proof:-

Suppose d=gcd(a,b), then d≥0 and d satisfied or can be expressed as ,

d=ax+by……………………eq(1)

Now if c is any other common factor of a and b then their exist p and qZ such that ,

a=cp and b=cq

by putting the value of a and b in eq(1)

that is ,

d=(cp)x)+(cq)y

d=c(px+qy)

in other words c divides d.

No comments:

Post a Comment

Mind blowing hard question

प्रश्न: एक समकोण त्रिभुज का लम्ब 6मिटर इसक  कर्ण 10मिटर से लगा हुआ है।क्षेत्रफल का मान पता  करें।                आप इसका उत्तर 1/2×10×6=30 s...